In cyber-physical systems (CPS), such as intelligent production and service systems (e.g. flexible/reconfigurable manufacturing systems), and intelligent transportation systems (public transportation and traffic control), change can have important impacts on organization, performance, quality of service and user safety and satisfaction. Change can be expected or unexpected. It can be related to product/service requirements, resource availability and reliability, process capability, and environment (natural, social, legal, economic) stability. For example, change in production systems may appear in the form of several kinds of disturbances (also called disruptions), such as supply unavailability, machine failures, tool breakage, workforce absenteeism, quality problems, rush orders, etc. In transportation systems, accidents, traffic congestion, or freeing the way to emergency vehicles (ambulances, firefighters, etc.) may disturb the fluidity of traffic and affect the expected execution of preset organization and pre-established timetables of public transportation resources (buses, trains, metros, trams, etc.). Thus, detecting disturbances on-line, and identifying their risky consequences timely are important tasks that enable advised decision-making and reaction to maintain performance and quality of service. The speech will provide an overview of artificial immune systems (AIS) as an artificial intelligence paradigm to achieve distributed and adaptive control of change and disturbances in CPS. A generic reactive decision-making framework will be presented, on-going developments in manufacturing and transportation systems will be described, and future research opportunities will be highlighted.